Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
2.
Sci Data ; 11(1): 416, 2024 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-38653806

RESUMO

Our sense of hearing is mediated by cochlear hair cells, of which there are two types organized in one row of inner hair cells and three rows of outer hair cells. Each cochlea contains 5-15 thousand terminally differentiated hair cells, and their survival is essential for hearing as they do not regenerate after insult. It is often desirable in hearing research to quantify the number of hair cells within cochlear samples, in both pathological conditions, and in response to treatment. Machine learning can be used to automate the quantification process but requires a vast and diverse dataset for effective training. In this study, we present a large collection of annotated cochlear hair-cell datasets, labeled with commonly used hair-cell markers and imaged using various fluorescence microscopy techniques. The collection includes samples from mouse, rat, guinea pig, pig, primate, and human cochlear tissue, from normal conditions and following in-vivo and in-vitro ototoxic drug application. The dataset includes over 107,000 hair cells which have been identified and annotated as either inner or outer hair cells. This dataset is the result of a collaborative effort from multiple laboratories and has been carefully curated to represent a variety of imaging techniques. With suggested usage parameters and a well-described annotation procedure, this collection can facilitate the development of generalizable cochlear hair-cell detection models or serve as a starting point for fine-tuning models for other analysis tasks. By providing this dataset, we aim to give other hearing research groups the opportunity to develop their own tools with which to analyze cochlear imaging data more fully, accurately, and with greater ease.


Assuntos
Cóclea , Animais , Camundongos , Cobaias , Humanos , Ratos , Suínos , Células Ciliadas Auditivas , Microscopia de Fluorescência , Aprendizado de Máquina
3.
mBio ; 14(5): e0158923, 2023 Oct 31.
Artigo em Inglês | MEDLINE | ID: mdl-37681946

RESUMO

IMPORTANCE: Human metapneumovirus is an important respiratory pathogen that causes significant morbidity and mortality, particularly in the very young, the elderly, and the immunosuppressed. However, the molecular details of how this virus spreads to new target cells are unclear. This work provides important new information on the formation of filamentous structures that are consistent with virus particles and adds critical new insight into the structure of extensions between cells that form during infection. In addition, it demonstrates for the first time the movement of viral replication centers through these intercellular extensions, representing a new mode of direct cell-to-cell spread that may be applicable to other viral systems.


Assuntos
Metapneumovirus , Humanos , Idoso , Linhagem Celular , Citoesqueleto , Corpos de Inclusão , Vírion
4.
bioRxiv ; 2023 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-37693382

RESUMO

Our sense of hearing is mediated by cochlear hair cells, localized within the sensory epithelium called the organ of Corti. There are two types of hair cells in the cochlea, which are organized in one row of inner hair cells and three rows of outer hair cells. Each cochlea contains a few thousands of hair cells, and their survival is essential for our perception of sound because they are terminally differentiated and do not regenerate after insult. It is often desirable in hearing research to quantify the number of hair cells within cochlear samples, in both pathological conditions, and in response to treatment. However, the sheer number of cells along the cochlea makes manual quantification impractical. Machine learning can be used to overcome this challenge by automating the quantification process but requires a vast and diverse dataset for effective training. In this study, we present a large collection of annotated cochlear hair-cell datasets, labeled with commonly used hair-cell markers and imaged using various fluorescence microscopy techniques. The collection includes samples from mouse, human, pig and guinea pig cochlear tissue, from normal conditions and following in-vivo and in-vitro ototoxic drug application. The dataset includes over 90'000 hair cells, all of which have been manually identified and annotated as one of two cell types: inner hair cells and outer hair cells. This dataset is the result of a collaborative effort from multiple laboratories and has been carefully curated to represent a variety of imaging techniques. With suggested usage parameters and a well-described annotation procedure, this collection can facilitate the development of generalizable cochlear hair cell detection models or serve as a starting point for fine-tuning models for other analysis tasks. By providing this dataset, we aim to supply other groups within the hearing research community with the opportunity to develop their own tools with which to analyze cochlear imaging data more fully, accurately, and with greater ease.

5.
Nat Commun ; 14(1): 3871, 2023 06 30.
Artigo em Inglês | MEDLINE | ID: mdl-37391431

RESUMO

TRPA1 channels are expressed in nociceptive neurons, where they detect noxious stimuli, and in the mammalian cochlea, where their function is unknown. Here we show that TRPA1 activation in the supporting non-sensory Hensen's cells of the mouse cochlea causes prolonged Ca2+ responses, which propagate across the organ of Corti and cause long-lasting contractions of pillar and Deiters' cells. Caged Ca2+ experiments demonstrated that, similar to Deiters' cells, pillar cells also possess Ca2+-dependent contractile machinery. TRPA1 channels are activated by endogenous products of oxidative stress and extracellular ATP. Since both these stimuli are present in vivo after acoustic trauma, TRPA1 activation after noise may affect cochlear sensitivity through supporting cell contractions. Consistently, TRPA1 deficiency results in larger but less prolonged noise-induced temporary shift of hearing thresholds, accompanied by permanent changes of latency of the auditory brainstem responses. We conclude that TRPA1 contributes to the regulation of cochlear sensitivity after acoustic trauma.


Assuntos
Perda Auditiva Provocada por Ruído , Canal de Cátion TRPA1 , Animais , Camundongos , Cóclea , Células Epiteliais , Potenciais Evocados Auditivos do Tronco Encefálico , Células Labirínticas de Suporte , Canal de Cátion TRPA1/genética
6.
J Vis Exp ; (167)2021 01 21.
Artigo em Inglês | MEDLINE | ID: mdl-33554973

RESUMO

Inner ear hair cells detect sound-induced displacements and transduce these stimuli into electrical signals in a hair bundle that consists of stereocilia that are arranged in rows of increasing height. When stereocilia are deflected, they tug on tiny (~5 nm in diameter) extracellular tip links interconnecting stereocilia, which convey forces to the mechanosensitive transduction channels. Although mechanotransduction has been studied in live hair cells for decades, the functionally important ultrastructural details of the mechanotransduction machinery at the tips of stereocilia (such as tip link dynamics or transduction-dependent stereocilia remodeling) can still be studied only in dead cells with electron microscopy. Theoretically, scanning probe techniques, such as atomic force microscopy, have enough resolution to visualize the surface of stereocilia. However, independent of imaging mode, even the slightest contact of the atomic force microscopy probe with the stereocilia bundle usually damages the bundle. Here we present a detailed protocol for the hopping probe ion conductance microscopy (HPICM) imaging of live rodent auditory hair cells. This non-contact scanning probe technique allows time lapse imaging of the surface of live cells with a complex topography, like hair cells, with single nanometers resolution and without making physical contact with the sample. The HPICM uses an electrical current passing through the glass nanopipette to detect the cell surface in close vicinity to the pipette, while a 3D-positioning piezoelectric system scans the surface and generates its image. With HPICM, we were able to image stereocilia bundles and the links interconnecting stereocilia in live auditory hair cells for several hours without noticeable damage. We anticipate that the use of HPICM will allow direct exploration of ultrastructural changes in the stereocilia of live hair cells for better understanding of their function.


Assuntos
Células Ciliadas Auditivas/fisiologia , Mamíferos/fisiologia , Nanopartículas/química , Estereocílios/fisiologia , Animais , Artefatos , Calibragem , Células Ciliadas Auditivas/ultraestrutura , Processamento de Imagem Assistida por Computador , Camundongos , Microscopia , Microscopia de Força Atômica , Nanopartículas/ultraestrutura , Ratos , Padrões de Referência , Estereocílios/ultraestrutura , Vibração
7.
J Assoc Res Otolaryngol ; 21(2): 121-135, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-32152769

RESUMO

Mammalian hair cells develop their mechanosensory bundles through consecutive phases of stereocilia elongation, thickening, and retraction of supernumerary stereocilia. Many molecules involved in stereocilia elongation have been identified, including myosin-XVa. Significantly less is known about molecular mechanisms of stereocilia thickening and retraction. Here, we used scanning electron microscopy (SEM) to quantify postnatal changes in number and diameters of the auditory hair cell stereocilia in shaker-2 mice (Myo15sh2) that lack both "long" and "short" isoforms of myosin-XVa, and in mice lacking only the "long" myosin-XVa isoform (Myo15∆N). Previously, we observed large mechanotransduction current in young postnatal inner (IHC) and outer (OHC) hair cells of both these strains. Stereocilia counts showed nearly identical developmental retraction of supernumerary stereocilia in control heterozygous, Myo15sh2/sh2, and Myo15∆N/∆N mice, suggesting that this retraction is largely unaffected by myosin-XVa deficiency. However, myosin-XVa deficiency does affect stereocilia diameters. In control, the first (tallest) and second row stereocilia grow in diameter simultaneously. However, the third row stereocilia in IHCs grow only until postnatal day 1-2 and then become thinner. In OHCs, they also grow slower than taller stereocilia, forming a stereocilia diameter gradation within a hair bundle. The sh2 mutation disrupts this gradation and makes all stereocilia nearly identical in thickness in both IHCs and OHCs, with only subtle residual diameter differences. All Myo15sh2/sh2 stereocilia grow postnatally including the third row, which is not a part of normal development. Serial sections with focused ion beam (FIB)-SEM confirmed that diameter changes of Myo15sh2/sh2 IHC and OHC stereocilia resulted from corresponding changes of their actin cores. In contrast to Myo15sh2/sh2, Myo15∆N/∆N hair cells develop prominent stereocilia diameter gradation. Thus, besides building the staircase, the short isoform of myosin-XVa is essential for controlling the diameter of the third row stereocilia and formation of the stereocilia diameter gradation in a hair bundle.


Assuntos
Células Ciliadas Auditivas Internas/ultraestrutura , Células Ciliadas Auditivas Externas/ultraestrutura , Miosinas/fisiologia , Estereocílios/fisiologia , Actinas/metabolismo , Animais , Camundongos , Camundongos Knockout , Isoformas de Proteínas , Estereocílios/ultraestrutura
8.
Hear Res ; 376: 47-57, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30638948

RESUMO

Despite all recent achievements in identification of the molecules that are essential for the structure and mechanosensory function of stereocilia bundles in the auditory hair cells of mammalian species, we still have only a rudimentary understanding of the mechanisms of stereocilia formation, maintenance, and repair. Important molecular differences distinguishing mammalian auditory hair cells from hair cells of other types and species have been recently revealed. In addition, we are beginning to solve the puzzle of the apparent life-long stability of the stereocilia bundles in these cells. New data link the stability of the cytoskeleton in the mammalian auditory stereocilia with the normal activity of mechanotransduction channels. These data suggest new ideas on how a terminally-differentiated non-regenerating hair cell in the mammalian cochlea may repair and tune its stereocilia bundle throughout the life span of the organism.


Assuntos
Células Ciliadas Auditivas/fisiologia , Células Ciliadas Auditivas/ultraestrutura , Estereocílios/fisiologia , Actinas/química , Actinas/fisiologia , Animais , Sinalização do Cálcio/fisiologia , Diferenciação Celular , Citoesqueleto/fisiologia , Citoesqueleto/ultraestrutura , Humanos , Mamíferos , Mecanotransdução Celular/fisiologia , Regeneração , Estereocílios/ultraestrutura
9.
Elife ; 62017 03 28.
Artigo em Inglês | MEDLINE | ID: mdl-28350294

RESUMO

Mechanotransducer channels at the tips of sensory stereocilia of inner ear hair cells are gated by the tension of 'tip links' interconnecting stereocilia. To ensure maximal sensitivity, tip links are tensioned at rest, resulting in a continuous influx of Ca2+ into the cell. Here, we show that this constitutive Ca2+ influx, usually considered as potentially deleterious for hair cells, is in fact essential for stereocilia stability. In the auditory hair cells of young postnatal mice and rats, a reduction in mechanotransducer current, via pharmacological channel blockers or disruption of tip links, leads to stereocilia shape changes and shortening. These effects occur only in stereocilia that harbor mechanotransducer channels, recover upon blocker washout or tip link regeneration and can be replicated by manipulations of extracellular Ca2+ or intracellular Ca2+ buffering. Thus, our data provide the first experimental evidence for the dynamic control of stereocilia morphology by the mechanotransduction current.


Assuntos
Células Ciliadas Auditivas/fisiologia , Células Ciliadas Auditivas/ultraestrutura , Mecanotransdução Celular , Estereocílios/fisiologia , Estereocílios/ultraestrutura , Animais , Animais Recém-Nascidos , Cálcio/metabolismo , Camundongos Endogâmicos C57BL , Microscopia Eletrônica de Varredura , Ratos Sprague-Dawley
10.
Methods Mol Biol ; 1427: 203-21, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27259929

RESUMO

The mechanosensory apparatus that detects sound-induced vibrations in the cochlea is located on the apex of the auditory sensory hair cells and it is made up of actin-filled projections, called stereocilia. In young rodents, stereocilia bundles of auditory hair cells consist of 3-4 rows of stereocilia of decreasing height and varying thickness. Morphological studies of the auditory stereocilia bundles in live hair cells have been challenging because the diameter of each stereocilium is near or below the resolution limit of optical microscopy. In theory, scanning probe microscopy techniques, such as atomic force microscopy, could visualize the surface of a living cell at a nanoscale resolution. However, their implementations for hair cell imaging have been largely unsuccessful because the probe usually damages the bundle and disrupts the bundle cohesiveness during imaging. We overcome these limitations by using hopping probe ion conductance microscopy (HPICM), a non-contact scanning probe technique that is ideally suited for the imaging of live cells with a complex topography. Organ of Corti explants are placed in a physiological solution and then a glass nanopipette-which is connected to a 3D-positioning piezoelectric system and to a patch clamp amplifier-is used to scan the surface of the live hair cells at nanometer resolution without ever touching the cell surface.Here, we provide a detailed protocol for the imaging of mouse or rat stereocilia bundles in live auditory hair cells using HPICM. We provide information about the fabrication of the nanopipettes, the calibration of the HPICM setup, the parameters we have optimized for the imaging of live stereocilia bundles and, lastly, a few basic image post-processing manipulations.


Assuntos
Cóclea/ultraestrutura , Microscopia de Varredura por Sonda/instrumentação , Estereocílios/ultraestrutura , Animais , Condutividade Elétrica , Camundongos , Microscopia de Varredura por Sonda/métodos , Nanotecnologia/instrumentação , Ratos
11.
Biophys J ; 110(10): 2252-65, 2016 05 24.
Artigo em Inglês | MEDLINE | ID: mdl-27224490

RESUMO

Scanning ion conductance microscopy (SICM) is a super-resolution live imaging technique that uses a glass nanopipette as an imaging probe to produce three-dimensional (3D) images of cell surface. SICM can be used to analyze cell morphology at nanoscale, follow membrane dynamics, precisely position an imaging nanopipette close to a structure of interest, and use it to obtain ion channel recordings or locally apply stimuli or drugs. Practical implementations of these SICM advantages, however, are often complicated due to the limitations of currently available SICM systems that inherited their design from other scanning probe microscopes in which the scan assembly is placed right above the specimen. Such arrangement makes the setting of optimal illumination necessary for phase contrast or the use of high magnification upright optics difficult. Here, we describe the designs that allow mounting SICM scan head on a standard patch-clamp micromanipulator and imaging the sample at an adjustable approach angle. This angle could be as shallow as the approach angle of a patch-clamp pipette between a water immersion objective and the specimen. Using this angular approach SICM, we obtained topographical images of cells grown on nontransparent nanoneedle arrays, of islets of Langerhans, and of hippocampal neurons under upright optical microscope. We also imaged previously inaccessible areas of cells such as the side surfaces of the hair cell stereocilia and the intercalated disks of isolated cardiac myocytes, and performed targeted patch-clamp recordings from the latter. Thus, our new, to our knowledge, angular approach SICM allows imaging of living cells on nontransparent substrates and a seamless integration with most patch-clamp setups on either inverted or upright microscopes, which would facilitate research in cell biophysics and physiology.


Assuntos
Imageamento Tridimensional/métodos , Microscopia de Varredura por Sonda/métodos , Adulto , Animais , Células Cultivadas , Meios de Cultura , Desenho de Equipamento , Feminino , Células HeLa , Humanos , Imageamento Tridimensional/instrumentação , Masculino , Camundongos , Micromanipulação/instrumentação , Micromanipulação/métodos , Microscopia Eletrônica de Varredura , Microscopia de Varredura por Sonda/instrumentação , Nanotecnologia , Técnicas de Patch-Clamp/instrumentação , Técnicas de Patch-Clamp/métodos , Ratos Sprague-Dawley
12.
J Asthma ; 50(3): 223-30, 2013 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-23259774

RESUMO

Introduction. A dysregulation of regulatory T cells (Tregs) could play a major role in the pathogenesis of bronchial asthma. Sex-dependent differences as well as the impact of hormonal changes in the incidence and severity of asthma are widely recognized. Emerging evidence suggests that asthma symptoms are alleviated in female patients taking hormone oral contraceptives (OCs). The impact of OCs on the generation of induced Tregs (iTregs) was assessed in a cohort of female patients with asthma. Methods. Thirteen patients were included in this pilot study. During three distinct phases of their menstrual cycles, we measured exhaled nitric oxide (eNO) levels, forced expiratory volume at 1 second (FEV1s), asthma control test (ACT) score, sex steroid hormone levels in serum, natural Tregs in peripheral blood, and the ability of CD4(+) T cells to generate iTregs ex vivo. Results. The luteal serum levels of estradiol and progesterone negatively correlated with the proportion of iTregs generated ex vivo in patients not taking OCs. In addition, physiological doses of estradiol and progesterone prevented the acquisition of a suppressor T cell phenotype in vitro. Interestingly, patients taking OCs had reduced serum sex hormone levels associated with higher iTreg induction, a better ACT score, and a tendency toward lower eNO levels. Conclusions. Our results identify an impact of sex hormones on the capacity of T cells to polarize towards a regulatory phenotype and suggest the regulation of peripheral T cell lineage plasticity as a potential mechanism underlying the beneficial effects of OCs in women with asthma.


Assuntos
Asma/imunologia , Anticoncepcionais Orais/farmacologia , Linfócitos T Reguladores/efeitos dos fármacos , Adulto , Asma/sangue , Testes Respiratórios , Estudos de Coortes , Estradiol/sangue , Estradiol/imunologia , Feminino , Citometria de Fluxo , Volume Expiratório Forçado/efeitos dos fármacos , Volume Expiratório Forçado/imunologia , Humanos , Ciclo Menstrual/efeitos dos fármacos , Ciclo Menstrual/imunologia , Óxido Nítrico/imunologia , Projetos Piloto , Progesterona/sangue , Progesterona/imunologia , Estatísticas não Paramétricas , Linfócitos T Reguladores/imunologia , Adulto Jovem
13.
J Assoc Res Otolaryngol ; 12(6): 729-40, 2011 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-21879401

RESUMO

Aminoglycoside ototoxicity involves the accumulation of antibiotic molecules in the inner ear hair cells and the subsequent degeneration of these cells. The exact route of entry of aminoglycosides into the hair cells in vivo is still unknown. Similar to other small organic cations, aminoglycosides could be brought into the cell by endocytosis or permeate through large non-selective cation channels, such as mechanotransduction channels or ATP-gated P2X channels. Here, we show that the aminoglycoside antibiotic gentamicin can enter mouse outer hair cells (OHCs) via TRPA1, non-selective cation channels activated by certain pungent compounds and by endogenous products of lipid peroxidation. Using conventional and perforated whole-cell patch clamp recordings, we found that application of TRPA1 agonists initiates inward current responses in wild-type OHCs, but not in OHCs of homozygous Trpa1 knockout mice. Similar responses consistent with the activation of non-selective cation channels were observed in heterologous cells transfected with mouse Trpa1. Upon brief activation with TRPA1 agonists, Trpa1-transfected cells become loaded with fluorescent gentamicin-Texas Red conjugate (GTTR). This uptake was not observed in mock-transfected or non-transfected cells. In mouse organ of Corti explants, TRPA1 activation resulted in the rapid entry of GTTR and another small cationic dye, FM1-43, in OHCs and some supporting cells, even when hair cell mechanotransduction was disrupted by pre-incubation in calcium-free solution. This TRPA1-mediated entry of GTTR and FM1-43 into OHCs was observed in wild-type but not in Trpa1 knockout mice and was not blocked by PPADS, a non-selective blocker of P2X channels. Notably, TRPA1 channels in mouse OHCs were activated by 4-hydroxynonenal, an endogenous molecule that is known to be generated during episodes of oxidative stress and accumulate in the cochlea after noise exposure. We concluded that TRPA1 channels may provide a novel pathway for the entry of aminoglycosides into OHCs.


Assuntos
Aminoglicosídeos/farmacocinética , Aminoglicosídeos/toxicidade , Gentamicinas/farmacocinética , Gentamicinas/toxicidade , Células Ciliadas Auditivas Externas , Canais de Potencial de Receptor Transitório/metabolismo , Aldeídos/farmacologia , Animais , Células COS , Cátions/farmacocinética , Chlorocebus aethiops , Inibidores de Cisteína Proteinase/farmacologia , Corantes Fluorescentes/farmacocinética , Genótipo , Células HEK293 , Células Ciliadas Auditivas Externas/efeitos dos fármacos , Células Ciliadas Auditivas Externas/metabolismo , Células Ciliadas Auditivas Externas/patologia , Humanos , Potenciais da Membrana/efeitos dos fármacos , Potenciais da Membrana/fisiologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Técnicas de Cultura de Órgãos , Estresse Oxidativo/efeitos dos fármacos , Estresse Oxidativo/fisiologia , Técnicas de Patch-Clamp , Compostos de Piridínio/farmacocinética , Compostos de Amônio Quaternário/farmacocinética , Canal de Cátion TRPA1 , Canais de Potencial de Receptor Transitório/antagonistas & inibidores , Canais de Potencial de Receptor Transitório/genética , Xantenos/farmacocinética
14.
Scand J Immunol ; 74(5): 471-81, 2011 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-21671975

RESUMO

Patients with adenosine deaminase (ADA) deficiency exhibit spontaneous and partial clinical remission associated with somatic reversion of inherited mutations. We report a child with severe combined immunodeficiency (T-B- SCID) due to ADA deficiency diagnosed at the age of 1 month, whose lymphocyte counts including CD4+ and CD8+ T and NK cells began to improve after several months with normalization of ADA activity in Peripheral blood lymphocytes (PBL), as a result of somatic mosaicism caused by monoallelic reversion of the causative mutation in the ADA gene. He was not eligible for haematopoietic stem cell transplantation (HSCT) or gene therapy (GT); therefore he was placed on enzyme replacement therapy (ERT) with bovine PEG-ADA. The follow-up of metabolic and immunologic responses to ERT included gradual improvement in ADA activity in erythrocytes and transient expansion of most lymphocyte subsets, followed by gradual stabilization of CD4+ and CD8+ T (with naïve phenotype) and NK cells, and sustained expansion of TCRγδ+ T cells. This was accompanied by the disappearance of the revertant T cells as shown by DNA sequencing from PBL. Although the patient's clinical condition improved marginally, he later developed a germinal cell tumour and eventually died at the age of 67 months from sepsis. This case adds to our current knowledge of spontaneous reversion of mutations in ADA deficiency and shows that the effects of the ERT may vary among these patients, suggesting that it could depend on the cell and type in which the somatic mosaicism is established upon reversion.


Assuntos
Adenosina Desaminase/metabolismo , Terapia de Reposição de Enzimas , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/terapia , Neoplasias Primárias Desconhecidas/genética , Neoplasias Primárias Desconhecidas/terapia , Imunodeficiência Combinada Severa/genética , Imunodeficiência Combinada Severa/terapia , Adenosina Desaminase/administração & dosagem , Adenosina Desaminase/genética , Adenosina Desaminase/imunologia , Animais , Linfócitos T CD4-Positivos/efeitos dos fármacos , Linfócitos T CD4-Positivos/imunologia , Linfócitos T CD4-Positivos/metabolismo , Linfócitos T CD4-Positivos/patologia , Linfócitos T CD8-Positivos/efeitos dos fármacos , Linfócitos T CD8-Positivos/imunologia , Linfócitos T CD8-Positivos/metabolismo , Linfócitos T CD8-Positivos/patologia , Bovinos , Contagem de Células , Criança , Pré-Escolar , Análise Mutacional de DNA , Evolução Fatal , Humanos , Imunofenotipagem , Lactente , Células Matadoras Naturais/patologia , Neoplasias Pulmonares/complicações , Neoplasias Pulmonares/fisiopatologia , Neoplasias Pulmonares/secundário , Masculino , Mosaicismo/efeitos dos fármacos , Mutação/genética , Neoplasias Primárias Desconhecidas/complicações , Neoplasias Primárias Desconhecidas/patologia , Neoplasias Primárias Desconhecidas/fisiopatologia , Receptores de Antígenos de Linfócitos T/metabolismo , Imunodeficiência Combinada Severa/complicações , Imunodeficiência Combinada Severa/patologia , Imunodeficiência Combinada Severa/fisiopatologia , Choque Séptico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...